Coverart for item
The Resource Cohomology for quantum groups via the geometry of the nullcone, Christopher P. Bendel, Daniel K. Nakano, Brian J. Parshall, Cornelius Pillen

Cohomology for quantum groups via the geometry of the nullcone, Christopher P. Bendel, Daniel K. Nakano, Brian J. Parshall, Cornelius Pillen

Label
Cohomology for quantum groups via the geometry of the nullcone
Title
Cohomology for quantum groups via the geometry of the nullcone
Statement of responsibility
Christopher P. Bendel, Daniel K. Nakano, Brian J. Parshall, Cornelius Pillen
Creator
Contributor
Author
Publisher
Subject
Language
eng
Member of
Cataloging source
DLC
Dewey number
512/.55
Index
no index present
Language note
Text in English
LC call number
QA169
LC item number
.B46 2014
Literary form
non fiction
Nature of contents
bibliography
Series statement
Memoirs of the American Mathematical Society,
Series volume
volume 229, number 1077
Label
Cohomology for quantum groups via the geometry of the nullcone, Christopher P. Bendel, Daniel K. Nakano, Brian J. Parshall, Cornelius Pillen
Link
http://dx.doi.org/10.1090/memo/1077
Instantiates
Publication
Copyright
Bibliography note
Includes bibliographical references (p. 89-93)
Carrier category
volume
Carrier category code
nc
Carrier MARC source
rdacarrier
Content category
text
Content type code
txt
Content type MARC source
rdacontent
Contents
Preliminaries and Statement of results -- Some preliminary notation -- Main results -- Quantum groups, actions, and cohomology -- Listings -- Quantum enveloping algebras -- Connections with algebraic groups -- Root vectors and PBW-basis -- Levi and parabolic subalgebras -- The subalgebra Uq(uj) -- Adjoint action -- Finite dimensionality of cohomology groups -- Spectral sequences and Euler characteristic -- Induction functors -- Computation of and N -- Subroot systems defined by weights -- The case of the classical Lie algebras -- Standardizing -- Resolution of singularities -- Normality of orbit closures -- Combinatorics and the Steinberg Module -- Steinberg weights -- Weights of -- Multiplicity of the Steinberg module -- Proof of Proposition 4.2.1 -- The weight -- Types Bn, Cn, Dn -- Type An -- Type An with l dividing n + 1 -- Exceptional Lie algebras -- The Cohomology Algebra H -- Spectral sequences, I -- Spectral sequences, II -- An identification theorem -- Spectral sequences, III -- Proof of main result, Theorem 1.2.3, I -- Spectral sequences, IV -- Proof of the main result, Theorem 1.2.3, II -- Finite Generation -- A finite generation result -- Proof of part (a) of Theorem 1.2.4 -- Proof of part (b) of Theorem 1.2.4 -- Comparison with Positive Characteristic -- The setting -- Assumptions -- Consequences -- Special cases -- Support Varieties over for the Modules and -- Quantum support varieties -- Lower bounds on the dimensions of support varieties -- Support varieties of : general results -- Support varieties of when l is good -- A question of naturality of support varieties -- The Constrictor Method I -- The Constrictor Method II -- Support varieties of when l is bad -- E6 when 3 l -- F4 when 3 l -- E7 when 3 l -- E8 when 3 l, 5 l -- Support varieties of when l is bad
Dimensions
26 cm.
Extent
ix, 93 pages
Isbn
9780821891759
Isbn Type
(alk. paper)
Lccn
2013051269
Media category
unmediated
Media MARC source
rdamedia
Media type code
n
System control number
  • (OCoLC)ocn867024601
  • UtOrBLW
  • (OCoLC)ocn889276811
Label
Cohomology for quantum groups via the geometry of the nullcone, Christopher P. Bendel, Daniel K. Nakano, Brian J. Parshall, Cornelius Pillen
Link
http://dx.doi.org/10.1090/memo/1077
Publication
Copyright
Bibliography note
Includes bibliographical references (p. 89-93)
Carrier category
volume
Carrier category code
nc
Carrier MARC source
rdacarrier
Content category
text
Content type code
txt
Content type MARC source
rdacontent
Contents
Preliminaries and Statement of results -- Some preliminary notation -- Main results -- Quantum groups, actions, and cohomology -- Listings -- Quantum enveloping algebras -- Connections with algebraic groups -- Root vectors and PBW-basis -- Levi and parabolic subalgebras -- The subalgebra Uq(uj) -- Adjoint action -- Finite dimensionality of cohomology groups -- Spectral sequences and Euler characteristic -- Induction functors -- Computation of and N -- Subroot systems defined by weights -- The case of the classical Lie algebras -- Standardizing -- Resolution of singularities -- Normality of orbit closures -- Combinatorics and the Steinberg Module -- Steinberg weights -- Weights of -- Multiplicity of the Steinberg module -- Proof of Proposition 4.2.1 -- The weight -- Types Bn, Cn, Dn -- Type An -- Type An with l dividing n + 1 -- Exceptional Lie algebras -- The Cohomology Algebra H -- Spectral sequences, I -- Spectral sequences, II -- An identification theorem -- Spectral sequences, III -- Proof of main result, Theorem 1.2.3, I -- Spectral sequences, IV -- Proof of the main result, Theorem 1.2.3, II -- Finite Generation -- A finite generation result -- Proof of part (a) of Theorem 1.2.4 -- Proof of part (b) of Theorem 1.2.4 -- Comparison with Positive Characteristic -- The setting -- Assumptions -- Consequences -- Special cases -- Support Varieties over for the Modules and -- Quantum support varieties -- Lower bounds on the dimensions of support varieties -- Support varieties of : general results -- Support varieties of when l is good -- A question of naturality of support varieties -- The Constrictor Method I -- The Constrictor Method II -- Support varieties of when l is bad -- E6 when 3 l -- F4 when 3 l -- E7 when 3 l -- E8 when 3 l, 5 l -- Support varieties of when l is bad
Dimensions
26 cm.
Extent
ix, 93 pages
Isbn
9780821891759
Isbn Type
(alk. paper)
Lccn
2013051269
Media category
unmediated
Media MARC source
rdamedia
Media type code
n
System control number
  • (OCoLC)ocn867024601
  • UtOrBLW
  • (OCoLC)ocn889276811

Library Locations

    • Harold B. Lee Library Brigham Young University, Provo, UT, 84602, US
      40.249156 -111.649242
Processing Feedback ...